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Abstract 

This project aims to computationally evaluate the feasibility of cancer cell reprogramming by 

identifying key genes within malignant networks. This data-driven approach provides a proof 

of concept that can guide future wet-lab validation. A gene expression profile (GSE44076) 

was downloaded from the Gene Expression Omnibus database (GEO). Differentially 

expressed genes (DEGs) were screened using the GEO2R tools. Moreover, a protein–protein 

interaction (PPI) network of the DEGs was constructed, functional enrichment analysis was 

performed and hub genes from the PPI were explored on STRING and with Microsoft Excel 

calculations. A total of 500 DEGs are screened, including 299 upregulated genes and 201 

downregulated genes. DEGs were enriched in several biological processes,  cellular 

components and molecular functions. For each dataset, we picked out the top 10 nodes with 

the most degree (edges) which we identified as hub genes. GTPBP4, RPF2, GRWD1, RRS1, 

WDR36, CEBPZ, DDX52, KRR1, MPHOSPH10 and PUM3 are picked out in 

GSE44067(Fig.10). In GSE21510, NOP56, GTPBP4, NOP58, RPF2, RRS1, GRWD1, NIFK, 

WDR12, BRIX1 and BYSL are selected(Fig.11). Among the two datasets, 4 genes: GTPBP4, 

RPF2, GRWD1 and RRS1 are shared which converge on ribosome biogenesis. These findings 

promote the understanding and provide a proof of concept of the molecular mechanism of 

molecular targets for cancer reprogramming. 

 

Introduction 

Cancer is one of the major threats to human life and health worldwide. Colorectal cancer 

(CRC) is one of the most common malignant tumors and ranks as the third most common 

cancer in the United States. It holds the second-highest mortality rate among cancer types, 

following lung cancer[1]. To date, surgery remains one of the primary and most effective 

strategies for early-stage cancers. However, the feasibility and outcomes of surgery highly 

depend on patient-specific circumstances, including cancer stages and physiological status. 

More than 50% of patients in stage III and IV will receive conventional chemo- and 

radio-therapy. However, most of them quickly develop acquired resistance. Although 

immunotherapy and targeted therapy have emerged as effective strategies in the past few 

years, their effects have been partially impeded due to cancer heterogeneity and the existence 

of cancer stem cells. Therefore, finding potential treatments that can globally manage cancer 

remains a crucial task[2]. 

 

What is cell reprogramming? 

Direct cell reprogramming (also known as transdifferentiation) refers to cell fate conversion 

without transitioning through an intermediary pluripotent state[3]. The idea of cancer cell 

reprogramming was suggested when the concept of cellular plasticity (the ability of a cell to 



reprogram and change its phenotype identity[4]) was first proposed by Gurdon et al., which 

confirmed that terminally differentiated somatic cells could be reprogrammed into other 

lineages. Given that cancer cells are also genetically and epigenetically plastic, it has been 

suggested that they have the potential to regain benign cell functions by re-expressing 

lineage-specific genes[2]. 

 

Cell reprogramming is a complex and dynamic process that involves widespread changes in 

gene expression, as well as alterations in epigenetic states. Several approaches have been 

explored for inducing cell reprogramming, including the forced expression of lineage-specific 

transcription factors, chemical modulation of epigenetic regulators, and the use of small 

molecules to influence signaling pathways[2]. 

 

After the first report of the conversion of mouse embryonic fibroblasts (MEFs) into 

myoblasts by forced expression of MyoD, the so-called transcription factors were found to be 

capable of converting one cell type to another. Transcription factors or even a combination of 

them often play a crucial role in determining and maintaining cell function. For example, a 

combination of Gata4, Mef2c, and Tbx5 was found to be essential for heart development[3]. 

The image below shows examples of transition factors for different conversions across germ 

layers. 

[1] 

Given the central role of transcription factors in maintaining cellular identity, their 

dysregulation is particularly relevant in cancer, where abnormal gene expression drives 

malignant transformation. Hence, in cancer cells, transcription factors are seen as 

transcriptional regulators that modulate gene expression in the intricate layers of gene 

regulation. Subsequent studies have demonstrated that benign and malignant cells show 

distinct patterns of gene expression, highlighting key transcriptional differences that may 

underlie the malignant phenotype. This discovery provided the foundation for identifying 

molecular targets that could be manipulated to revert cancer cells toward a more normal 

state[4]. A recent study from KAIST (Korea Advanced Institute of Science and Technology) 

exemplifies this approach by building a Boolean network model (BENEIN) to analyze gene 

regulatory interactions in colon cancer cells. This model identified three master regulators: 

MYB, HDAC2, and FOXA2, whose simultaneous inhibition prompted colon cancer cells in 

vitro to revert toward a normal-like intestinal phenotype and significantly suppressed 

malignancy, as evidenced by reduced tumor growth in mouse models[6]. 

 

Given that a wet-lab approach requires time, resources, and lab facilities, we have chosen to 

use a data-driven prototype based on real cancer gene expression data to explore the 



identification stage of cell reprogramming practically. By using existing data sets and online 

analytical tools, GEO2R and STRING, we are able to see how gene networks behave during 

malignancy[7]. A data-driven prototype also allowed us to test different conditions and large 

data samples much more efficiently than in a lab setting.   

 

This project aims to computationally evaluate the feasibility of cancer cell reprogramming by 

identifying key genes within malignant networks. Using publicly available gene expression 

datasets and analytical tools (GEO2R and STRING), we identify differentially expressed 

genes, map their interactions and highlight potential genes as reprogramming targets. This 

data-driven approach provides a proof of concept that can guide future wet-lab validation. 

 

Method 

 

Dataset selection 

Our methods are inspired by a 2021 study on the progression of cervical cancer[7]. The gene 

expression profile related to cancer progression was retrieved and downloaded from the 

Gene Expression Omnibus (GEO) database of the National Center for Biotechnology 

Information (NCBI). We have chosen GSE44076 and GSE21510 because they have been used 

to analyse hub genes by another group of scientists[8][9]. We have also decided to 

standardize our selection by only using colon cells gene expression dataset, as inspired by 

KAIST’s work. The gene expression profile of GSE44076 includes 98 primary colon cancers 

and 98 normal distant colon mucosa which were selected from a series of cases with a new 

diagnosis of colorectal adenocarcinoma histologically confirmed. Additionally, samples of 

colon mucosa from 50 healthy donors without colonic lesions were obtained during 

colonoscopy[10]. The gene expression profile of GSE21510 includes a total of 148 microarray 

datasets obtained from LCM[11]. Below is a flowchart of this project. 

 

Analysis of the dataset 



GEO2R tool was used to analyse the two datasets where we grouped the samples according 

to the information provided in the dataset (normal vs. cancer), and compare gene 

expressions to identify differentially expressed genes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GEO2R applies the limma (Linear Models for Microarray Data) package in R to calculate fold 

changes and adjusted p-values, correcting for multiple testing using the 

Benjamini–Hochberg false discovery rate (FDR). Genes with an adjusted p-value < 0.05 and 

|log2 fold change| ≥ 1 were considered significantly differentially expressed. The resulting 

DEG list was then exported for network analysis in STRING. 

Construction of the PPI network 

The DEGs identified from GEO2R were entered into the STRING (Search Tool for the 

Retrieval of Interacting Genes/Proteins) database to explore their potential protein-level 

interactions. We set the species to Homo sapiens and applied a medium confidence score 

cut-off of 0.4 to ensure reliable interactions while still capturing relevant connections. 

STRING generated a network of nodes (proteins) and edges (interactions), which was then 

exported as a table of interactions. This table was imported into an Excel file to allow for 

further analysis and identification of hub genes by examining the degree of connectivity for 

each node. 

Results 

Identification of hub genes 

The dataset was then imported into Microsoft Excel, where the degree of connectivity for 

each protein was calculated using the COUNTIF formula by counting the number of 

interactions (edges) associated with each node. Proteins with the highest number of 

connections were considered hub genes as their high degree of interaction suggests an 

important regulatory role within the malignant gene network. 

 

Identification of DEGs 

By analysing both GSE44076 and GSE21510, the top 250 DEGs are found for each dataset.  



For GSE44076, 139 upregulated genes (log2 fold change >0) and 111 downregulated genes 

(log2 fold change <0) were identified, and for GSE21510, 160 upregulated genes and 90 

downregulated genes were identified. Among the 2 datasets, 52 genes were shared: ABCA8 

ABCG2, ACADS, APPL2, AQP8, ATP11A, BEST4, C11orf86, C2orf88, CA1, CA4, CA7, CBFB, 

CBX3, CDKN2B, CEACAM7, CITED2, CLDN1, CSE1L, DDX21, FOXQ1, GCNT2, GLTP, 

GNA11, GTPBP4, GUCA2A, GUCA2B, HIGD1A, HS2ST1, IL6R, LDHD, MMP28, NFE2L3, 

NUFIP1, OSBPL3, PLCD1, POLR1B, PPM1H, PPP2R3A, SCARA5, SCIN, SLC4A4, SLC6A6, 

TEX11, TGFBI, TP53INP2, UGP2, USP2, WDR75, XPOT, ZNF575 and ZZEF1. A section of 

the tables is shown in Fig.1 and Fig.2. By analysing the mean-difference plot, we realised that 

upregulated genes have a log2 fold change of >0, whereas downregulated genes have a log2 

fold change of <0. This is further supported as the mean-different plots(Fig. 3) for both 

datasets show the same results. Volcano plots (Fig.4) helped us identify genes that are 

strongly differentially expressed and statistically significant as they combine both the log2 

fold change and the -log10(p-value). Hub genes are therefore outliers which reinforced their 

relevance when we later constructed the PPI network. Furthermore, the UMAP (Uniform 

Manifold Approximation and Projection) plot (Fig.5) allowed us to visualise the overall 

expression patterns between the malignant and normal samples. The distinct separation 

between the groups in both datasets suggested that they capture biologically relevant 

differences, providing confidence in the downstream differential expression analysis[12]. 

Any overlaps between clusters could indicate heterogeneity within the cancer samples, which 

is consistent with the complexity of tumour biology. 

Fig.1 Top 250 DEGs from GSE44076 

 

Fig.2 Top 250 DEGs from GSE21510 

 

 

 

 



            

Fig.3 Mean-different plots of Top 250 DEGs from GSE44076 and GSE21510 

     

Fig.4 Volcano plots of Top 250 DEGs from GSE44076 and GSE21510 

   

Fig.5 UMAP plots of Top 250 DEGs from GSE44076 and GSE21510 

 

PPI network construction 

 

A total of 500 genes were uploaded to STRING database. The PPI network of GSE44076 is 

shown in Fig.6 which includes 243 nodes and 4296 edges. The functional enrichment 

analysis in this PPI network included 37 clusters, 84 GO terms, 1 KEGG pathway, 4 



Reactome pathways and 14 protein domains. According to Fig.7, it also revealed that most of 

the genes were associated with broad biological processes like cellular processes and 

metabolism. Specifically, many were enriched in categories such as organic substance 

metabolic process, cellular metabolic process and primary metabolic process, indicating that 

the network is strongly involved in fundamental metabolic pathways which are essential for 

cancer cell survival and proliferation. Moreover, beyond broad categories, the clusters found 

to be enriched in more significant ones which are cellular biogenesis, RNA processing and 

maturation. This could suggest that tumor cells require elevated biogenesis to sustain rapid 

proliferation and exploit RNA processing pathways to alter gene expression in their 

favor[13]. Other top categories in GO terms are also shown in Fig.7. 

 

Fig.6 PPI network of DEGs from GSE44076 

 

 



 

Fig.7 gene count and FDR tables of GO terms from GSE44076 

 

The PPI network of GSE21510 is shown in Fig.8, which includes 250 nodes and 4518 edges. 

The functional enrichment analysis in this PPI network included 30 clusters, 93 GO terms, 2 

KEGG pathways, 5 Reactome pathways and 14 protein domains. The analysis (Fig.9) also 

revealed that most of the genes were associated with cellular processes, metabolism, RNA 

processing and maturation, along with other categories in molecular function and cellular 

component, which also showed the same results as GSE44076. These genes express proteins 

and then interact functionally in both PPI networks, revealing their role in the progression of 

colon cancer. 

Fig.8 PPI network of DEGs from GSE21510 

 

 

 

 

 

 

 

 



Fig.9 gene count and FDR 

tables of GO terms from GSE21510 

 

Identification of hub genes 

The interaction tables for each dataset were downloaded from STRING and exported as 

EXCEL spreadsheets for further analysis. For each dataset, we picked out the top 10 nodes 

with the most degree (edges) which we identified as hub genes. GTPBP4, RPF2, GRWD1, 

RRS1, WDR36, CEBPZ, DDX52, KRR1, MPHOSPH10 and PUM3 are picked out in 

GSE44067(Fig.10). In GSE21510, NOP56, GTPBP4, NOP58, RPF2, RRS1, GRWD1, NIFK, 

WDR12, BRIX1 and BYSL are selected(Fig.11). Among the two datasets, 4 genes: GTPBP4, 

RPF2, GRWD1 and RRS1 are shared, suggesting these genes are promising or potential 

targets for reprogramming.  



Fig.10 Top 30 most connected genes from GSE44067 

Fig. 11 Top 30 most connected genes from GSE21510 

 

Discussion 

 

Based on the analysis of the two datasets, this project deepened our understanding of the 

molecular mechanism of colon cancer and identified key hub genes. The hub genes GTPBP4, 

RPF2, GRWD1, and RRS1, which we identified in both PPI networks, serve as central 

regulators of gene interaction in colon cancer cells in different ways. GTBP4 (GTP binding 

protein 4) is a GTPase and functions as a molecular switch that can flip between two states: 

active(the molecule acts as a signal to trigger other events in the cell), when GTP is bound, 

and inactive, when GDP is bound[14]. It is said to be closely related to tumor metastasis, 

promotes cell motility and is detected in CRC metastatic tissues. GTPBP4 promotes CRC 

metastasis by primarily disrupting the actin cytoskeleton [15]. RPF2 (ribosome production 

factor 2 homolog) is a gene that enables 5S rRNA binding activity and is involved in protein 

localization to the nucleolus[16]. An elevated expression of RPF2 was observed in cancerous 

cells compared to normal colorectal cells which served as an indication that RPF2 may be 

involved in the activation process of Epithelial-Mesenchymal Transition(EMT) (a cellular 

program in which epithelial cells acquire a mesenchymal phenotype, resulting in increased 

invasiveness, enhanced stemness, and heightened resistance to therapeutic agents and 

immune responses in epithelial tumor cells), therefore enhancing the invasive and migratory 



capabilities of CRC cells[1]. Additionally, GRWD1 (glutamate-rich WD repeat containing 1) 

encodes a glutamate-rich protein that contains five WD-repeat motifs which plays a critical 

role in ribosome biogenesis[17]. Moreover, GRWD1 was found to stimulate cell migration, 

induce EMT and promote colony formation; hence, it is positively correlated with tumour 

size. Interestingly, this glutamate-rich gene also activates the Notch signaling pathway which 

is involved in development, differentiation, cell proliferation and apoptosis. Some studies 

have shown that it also plays a regulatory role in malignant tumors[18]. Lastly, RRS1 

(regulator of ribosome synthesis 1) enables 5S rRNA binding activity. It is involved in several 

processes, including mitotic metaphase chromosome alignment, protein localization to the 

nucleolus and ribosomal large subunit assembly[19].  ​Recent studies have shown that RRS1 

interacts with RPF2 to form a complex that regulates the maturation of the 60S ribosomal 

subunit. In this way, it plays an important role in ribosome biogenesis. RRS1 is highly 

expressed in colorectal cancer (CRC) tissues, and its expression is inversely correlated with 

the survival of CRC patients[20]. 

 

Because all these hub genes converge on ribosome biogenesis, they represent attractive 

reprogramming targets. Aberrant cell growth and proliferation depend on hyperactive, in 

other words, dysregulated ribosome biogenesis, meaning increased protein synthesis and 

overactive translation. This is enabled by cellular regulatory pathways that are hijacked to 

tune transcription and translation. This is consistent with the acquisition of genetic and 

epigenetic alterations by cancer cells and changes in the regulatory layers of translation such 

as microRNAs and RNA-binding proteins that play significant roles during tumor 

progression and metastasis[21].  

 

Thereby, modulating the expression of those hub genes could essentially reduce translational 

output, weaken metastatic potential and oppose excessive changes in ribosome biosynthesis 

and halt cell growth. Ultimately, pushing cells toward a less proliferative, more benign 

phenotype.[21]. Additionally, reprogramming hub genes could trigger a wider network effect 

and possibly shut down multiple malignant pathways in one go while sparing normal cells 

due to non-oncogene addiction[22], enhancing therapeutic effects. The diagram below 

outlines the process of ribosome biogenesis. 

 



[21] 

How this project informs future research 

This project provides a validated bioinformatics pipeline as it demonstrates a clear, 

replicable and accessible workflow using public tools (GEO2R, STRING, basic Excel analysis) 

to move from raw genomic data to a list of high-value therapeutic targets. Excel is used over 

Cytoscape, considering that Excel is a common tool used in daily life. This essentially serves 

as a guideline for other young researchers to apply similar analysis to other cancer types. 

Moreover, successfully identifying known central players in colorectal cancer like GTPBP4 

and RPF2, provides strong evidence that analyzing PPI networks built from DEGs is a valid 

strategy for uncovering key regulatory genes. This justifies further investment in more 

complex network medicine approaches in the future. The precise reduction of gene targets 

from thousands of DEGs to a handful of hub genes directly informs wet-lab research by 

providing a strong, data-driven hypothesis to test, which saves time, resources and funding.  

 

Hub genes also assist in the discovery of more biomarkers. For example, receiver operating 

characteristic (ROC) analysis can be used to further evaluate their diagnostic value for 

targeted therapies[23]. 

 

Limitations 

While informative, this study is a prototype and has several important limitations. The size 

of the GEO datasets used inherently limits the analysis, as it may not capture the full genetic 

diversity of cancer patients or account for the tumor microenvironment's influence on gene 

expressions, which play a crucial role in regulating pathways like EMT and ribosome 

biogenesis[24].  

 

The PPI network from STRING represents a composite of interactions from various cell types 

and conditions. It is a static model that does not capture the dynamic, context-specific nature 

of gene regulatory networks within a living tumor. Moreover, STRING integrates predicted 

as well as experimental interactions, so some connections between genes may not actually 

occur in vivo, causing false positives. In terms of hub genes, identifying them based solely on 



their degree is a useful first step, but it is too simplistic as it does not incorporate other 

important network metrics, such as "betweenness centrality" (how crucial a node is to 

connecting others[25]) or the direction of regulation (activation vs. inhibition). From our 

results, most of our hub genes are involved in ribosome biogenesis. Therefore, even if those 

hub genes are essential for cancer progression, targeting ribosome biogenesis can also harm 

normal proliferating cells, limiting therapeutic use[21]. 

 

Most importantly, this project is based on computational predictions, not functional 

validation as the entire project is in silico. The role of these hub genes in functionally 

maintaining the cancerous state and their reprogrammability remains a prediction until 

validated experimentally in cell and animal models. Due to this lack of clinical validation, we 

cannot guarantee that these genes can be safely targeted in humans. The lack of patient 

specificity should also be acknowledged, as it does not account for inter-patient 

heterogeneity and does not constitute a personalized medicine approach without further 

patient-specific data integration. 

Potential next steps 

To build upon this prototype and overcome its limitations, future directions can include both 

experimental and computational strategies. CRISPR/Cas9 can be used in cancer research to 

edit genomes for the exploration of tumorigenesis and development. More specifically, 

CRISPR activation (CRISPRa) can be used to epigenetically upregulate tumor-suppressor 

genes and CRISPR interference (CRISPRi) to silence oncogenes by providing a valid measure 

for deletion, thereby inhibiting tumour growth[26]. CRISPR techniques can be explored in 

lab models such as Patient-Derived Organoids, which preserve tumor biology, heterogeneity 

and show the advantages for editable genes. Orthotopic xenograft models are also used to 

test efficacy in vivo to assess the impact on tumor growth and metastasis[27]. Moreover, 

using single-cell RNA-seq can track transcriptomic changes at individual cell level and 

determine if a stable, reprogrammed state is achieved[28]. 

 

More recently, the use of AI has been studied in terms of its contribution to clinical science. 

Training AI models (e.g., Graph Neural Networks) on larger, multi-omics datasets to identify 

hubs that are consistently central across a large population can separate core CRC drivers 

from context-specific ones. AI can also be used to discover novel interactions by mining these 

networks for synthetic lethal interactions, so non-obvious secondary targets become 

essential only when a primary hub is perturbed. 

 

From a personalised medicine approach, creating personalized gene expression profiles for 

individual patients can identify which hubs are most dominant in their specific cancer. This 

can be achieved by integrating genomic and transcriptomic data from their tumor 

biopsies[29]. 

 

By addressing these next steps, the promising predictions of this prototype can be rigorously 

tested, refined, and translated into a tangible strategy for overcoming cancer through 

network reprogramming. 

 

Conclusion 

 



In conclusion, a comprehensive analysis of DEGs and pathways involved in the occurrence 

and development of colorectal cancer was performed. We explored and obtained key 

regulatory genes and pathways contributing to the progression of colorectal cancer which 

promote the understanding of molecular mechanisms and clinically related molecular targets 

for reprogramming from malignant cells to their benign states. This prototype, although 

preliminary, mirrors the strategy pioneered by KAIST, where gene network analysis was used 

to identify master regulators in colon cancer while providing a proof of concept for cell 

reprogramming. 
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