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Abstract

This project aims to computationally evaluate the feasibility of cancer cell reprogramming by
identifying key genes within malignant networks. This data-driven approach provides a proof
of concept that can guide future wet-lab validation. A gene expression profile (GSE44076)
was downloaded from the Gene Expression Omnibus database (GEO). Differentially
expressed genes (DEGs) were screened using the GEO2R tools. Moreover, a protein—protein
interaction (PPI) network of the DEGs was constructed, functional enrichment analysis was
performed and hub genes from the PPI were explored on STRING and with Microsoft Excel
calculations. A total of 500 DEGs are screened, including 299 upregulated genes and 201
downregulated genes. DEGs were enriched in several biological processes, cellular
components and molecular functions. For each dataset, we picked out the top 10 nodes with
the most degree (edges) which we identified as hub genes. GTPBP4, RPF2, GRWD1, RRS1,
WDR36, CEBPZ, DDX52, KRR1, MPHOSPH10 and PUM3 are picked out in
GSE44067(Fig.10). In GSE21510, NOP56, GTPBP4, NOP58, RPF2, RRS1, GRWD1, NIFK,
WDR12, BRIX1 and BYSL are selected(Fig.11). Among the two datasets, 4 genes: GTPBP4,
RPF2, GRWD1 and RRS1 are shared which converge on ribosome biogenesis. These findings
promote the understanding and provide a proof of concept of the molecular mechanism of
molecular targets for cancer reprogramming.

Introduction

Cancer is one of the major threats to human life and health worldwide. Colorectal cancer
(CRQ) is one of the most common malignant tumors and ranks as the third most common
cancer in the United States. It holds the second-highest mortality rate among cancer types,
following lung cancer[1]. To date, surgery remains one of the primary and most effective
strategies for early-stage cancers. However, the feasibility and outcomes of surgery highly
depend on patient-specific circumstances, including cancer stages and physiological status.
More than 50% of patients in stage III and IV will receive conventional chemo- and
radio-therapy. However, most of them quickly develop acquired resistance. Although
immunotherapy and targeted therapy have emerged as effective strategies in the past few
years, their effects have been partially impeded due to cancer heterogeneity and the existence
of cancer stem cells. Therefore, finding potential treatments that can globally manage cancer
remains a crucial task[2].

What is cell reprogramming?
Direct cell reprogramming (also known as transdifferentiation) refers to cell fate conversion

without transitioning through an intermediary pluripotent state[3]. The idea of cancer cell
reprogramming was suggested when the concept of cellular plasticity (the ability of a cell to



reprogram and change its phenotype identity[4]) was first proposed by Gurdon et al., which
confirmed that terminally differentiated somatic cells could be reprogrammed into other
lineages. Given that cancer cells are also genetically and epigenetically plastic, it has been
suggested that they have the potential to regain benign cell functions by re-expressing
lineage-specific genes[2].

Cell reprogramming is a complex and dynamic process that involves widespread changes in
gene expression, as well as alterations in epigenetic states. Several approaches have been
explored for inducing cell reprogramming, including the forced expression of lineage-specific
transcription factors, chemical modulation of epigenetic regulators, and the use of small
molecules to influence signaling pathways[2].

After the first report of the conversion of mouse embryonic fibroblasts (MEFs) into
myoblasts by forced expression of MyoD, the so-called transcription factors were found to be
capable of converting one cell type to another. Transcription factors or even a combination of
them often play a crucial role in determining and maintaining cell function. For example, a
combination of Gatag, Mef2c, and Thx5 was found to be essential for heart development[3].
The image below shows examples of transition factors for different conversions across germ
layers.
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Given the central role of transcription factors in maintaining cellular identity, their
dysregulation is particularly relevant in cancer, where abnormal gene expression drives
malignant transformation. Hence, in cancer cells, transcription factors are seen as
transcriptional regulators that modulate gene expression in the intricate layers of gene
regulation. Subsequent studies have demonstrated that benign and malignant cells show
distinct patterns of gene expression, highlighting key transcriptional differences that may
underlie the malignant phenotype. This discovery provided the foundation for identifying
molecular targets that could be manipulated to revert cancer cells toward a more normal
state[4]. A recent study from KAIST (Korea Advanced Institute of Science and Technology)
exemplifies this approach by building a Boolean network model (BENEIN) to analyze gene
regulatory interactions in colon cancer cells. This model identified three master regulators:
MYB, HDAC2, and FOXA2, whose simultaneous inhibition prompted colon cancer cells in
vitro to revert toward a normal-like intestinal phenotype and significantly suppressed
malignancy, as evidenced by reduced tumor growth in mouse models[6].

Given that a wet-lab approach requires time, resources, and lab facilities, we have chosen to
use a data-driven prototype based on real cancer gene expression data to explore the



identification stage of cell reprogramming practically. By using existing data sets and online
analytical tools, GEO2R and STRING, we are able to see how gene networks behave during
malignancy[7]. A data-driven prototype also allowed us to test different conditions and large
data samples much more efficiently than in a lab setting.

This project aims to computationally evaluate the feasibility of cancer cell reprogramming by
identifying key genes within malignant networks. Using publicly available gene expression
datasets and analytical tools (GEO2R and STRING), we identify differentially expressed
genes, map their interactions and highlight potential genes as reprogramming targets. This
data-driven approach provides a proof of concept that can guide future wet-lab validation.

Method

Dataset selection

Our methods are inspired by a 2021 study on the progression of cervical cancer[7]. The gene
expression profile related to cancer progression was retrieved and downloaded from the
Gene Expression Omnibus (GEO) database of the National Center for Biotechnology
Information (NCBI). We have chosen GSE44076 and GSE21510 because they have been used
to analyse hub genes by another group of scientists[8][9]. We have also decided to
standardize our selection by only using colon cells gene expression dataset, as inspired by
KAIST’s work. The gene expression profile of GSE44076 includes 98 primary colon cancers
and 98 normal distant colon mucosa which were selected from a series of cases with a new
diagnosis of colorectal adenocarcinoma histologically confirmed. Additionally, samples of
colon mucosa from 50 healthy donors without colonic lesions were obtained during
colonoscopy[10]. The gene expression profile of GSE21510 includes a total of 148 microarray
datasets obtained from LCM[11]. Below is a flowchart of this project.

GEO expression profile
microarray datasets
GSE44076 and GSE21510

Y
Screening and analysis
(GEO2R)

Y
Table of DEGs

Y

PPI network of DEGs
(STRING)

Y
Hub gene analysis (Excel) ]

Analysis of the dataset




GEO2R tool was used to analyse the two datasets where we grouped the samples according
to the information provided in the dataset (normal vs. cancer), and compare gene
expressions to identify differentially expressed genes.

~ Samples ¥ Define groups Selected 246 out of 246 samples
i ypinamo Tt Columns ~ | Set
a
Healthy ~ GSM1077737  Normalp Normal distant colon mucosa cells ~ Normal Y2007 Right Female 62
x Cancel selection
Healthy  GSM1077738  Nomalp | | ooy (148 samples) | NOrmal distant colon mucosa cells  Normal Y2030 Right Female 69
Healthy ~ GSM1077739  Normalp | | Malignant (98 samples) g | Normal distant colon mucosa cells  Normal Y2053 Leit Male 7
Healthy ~ GSM1077740  Normal paired sample from Y2076 patient ~ Normal distant colon mucosa cells ~ Normal Y2076 Right Male 78
Healthy ~ GSM1077741 Normal paired sample from Y2099 patient  Normal distant colon mucosa cells ~ Normal Y2099 Right Male 72
Healthy ~ GSM1077742  Normal paired sample from Z2015 patient ~ Normal distant colon mucosa cells ~ Normal 72015 Right Male 84
Healthy ~ GSM1077743  Normal paired sample from 22038 patient  Normal distant colon mucosa cells ~ Normal 72038 Right Female 65
Healthy ~ GSM1077744  Normal paired sample from Z2061 patient  Normal distant colon mucosa cells ~ Normal 72061 Left Male 53
Healthy ~ GSM1077745  Normal paired sample from 22084 patient ~ Normal distant colon mucosa cells ~ Normal 72084 Left Male 81
Malignant GSM1077746  Tumor sample from A2004 patient Primary colon adenocarcinoma cells Tumor A2004 1A Left Male 66 l
Malignant GSM1077747  Tumor sample from A2027 patient Primary colon adenocarcinoma cells Tumor A2027 A Left Female 51
Malignant GSM1077748  Tumor sample from A2050 patient Primary colon adenocarcinoma cells Tumor A2050 1A Left Male 60
Malignant GSM1077749  Tumor sample from A2096 patient Primary colon adenocarcinoma cells Tumor A2096 1A Left Female 85
Malignant GSM1077750  Tumor sample from B2012 patient Primary colon adenocarcinoma cells Tumor B2012 1A Right Female 68
Malignant GSM1077751  Tumor sample from B2035 patient Primary colon adenocarcinoma cells Tumor B2035 1A Right Male 68

GEO2R applies the limma (Linear Models for Microarray Data) package in R to calculate fold
changes and adjusted p-values, correcting for multiple testing using the
Benjamini—Hochberg false discovery rate (FDR). Genes with an adjusted p-value < 0.05 and
|log2 fold change| > 1 were considered significantly differentially expressed. The resulting
DEG list was then exported for network analysis in STRING.

Construction of the PPT network

The DEGs identified from GEO2R were entered into the STRING (Search Tool for the
Retrieval of Interacting Genes/Proteins) database to explore their potential protein-level
interactions. We set the species to Homo sapiens and applied a medium confidence score
cut-off of 0.4 to ensure reliable interactions while still capturing relevant connections.
STRING generated a network of nodes (proteins) and edges (interactions), which was then
exported as a table of interactions. This table was imported into an Excel file to allow for
further analysis and identification of hub genes by examining the degree of connectivity for
each node.

Results

Identification of hub genes

The dataset was then imported into Microsoft Excel, where the degree of connectivity for
each protein was calculated using the COUNTIF formula by counting the number of
interactions (edges) associated with each node. Proteins with the highest number of
connections were considered hub genes as their high degree of interaction suggests an
important regulatory role within the malignant gene network.

Identification of DEGs
By analysing both GSE44076 and GSE21510, the top 250 DEGs are found for each dataset.



For GSE44076, 139 upregulated genes (log2 fold change >0) and 111 downregulated genes
(log2 fold change <0) were identified, and for GSE21510, 160 upregulated genes and 90
downregulated genes were identified. Among the 2 datasets, 52 genes were shared: ABCA8
ABCG2, ACADS, APPL2, AQP8, ATP11A, BEST4, C1101f86, C201f88, CA1, CA4, CA7, CBFB,
CBX3, CDKN2B, CEACAM7, CITED2, CLDN1, CSE1L, DDX21, FOXQ1, GCNT2, GLTP,
GNA11, GTPBP4, GUCA2A, GUCA2B, HIGD1A, HS2ST1, IL6R, LDHD, MMP28, NFE2L3,
NUFIP1, OSBPL3, PLCD1, POLR1B, PPM1H, PPP2R3A, SCARA5, SCIN, SLC4A4, SLC6A6,
TEX11, TGFBI, TP53INP2, UGP2, USP2, WDR75, XPOT, ZNF575 and ZZEF1. A section of
the tables is shown in Fig.1 and Fig.2. By analysing the mean-difference plot, we realised that
upregulated genes have a log2 fold change of >0, whereas downregulated genes have a log2
fold change of <o. This is further supported as the mean-different plots(Fig. 3) for both
datasets show the same results. Volcano plots (Fig.4) helped us identify genes that are
strongly differentially expressed and statistically significant as they combine both the log2
fold change and the -logio(p-value). Hub genes are therefore outliers which reinforced their
relevance when we later constructed the PPI network. Furthermore, the UMAP (Uniform
Manifold Approximation and Projection) plot (Fig.5) allowed us to visualise the overall
expression patterns between the malignant and normal samples. The distinct separation
between the groups in both datasets suggested that they capture biologically relevant
differences, providing confidence in the downstream differential expression analysis[12].
Any overlaps between clusters could indicate heterogeneity within the cancer samples, which
is consistent with the complexity of tumour biology.
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Fig.5 UMAP plots of Top 250 DEGs from GSE44076 and GSE21510

PPI network construction

A total of 500 genes were uploaded to STRING database. The PPI network of GSE44076 is
shown in Fig.6 which includes 243 nodes and 4296 edges. The functional enrichment
analysis in this PPI network included 37 clusters, 84 GO terms, 1 KEGG pathway, 4



Reactome pathways and 14 protein domains. According to Fig.7, it also revealed that most of
the genes were associated with broad biological processes like cellular processes and
metabolism. Specifically, many were enriched in categories such as organic substance
metabolic process, cellular metabolic process and primary metabolic process, indicating that
the network is strongly involved in fundamental metabolic pathways which are essential for
cancer cell survival and proliferation. Moreover, beyond broad categories, the clusters found
to be enriched in more significant ones which are cellular biogenesis, RNA processing and
maturation. This could suggest that tumor cells require elevated biogenesis to sustain rapid
proliferation and exploit RNA processing pathways to alter gene expression in their
favor[13]. Other top categories in GO terms are also shown in Fig.7.

Fig.6 PPI network of DEGs from GSE44076
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Cellular Component (Gene Ontology) enrichment
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Fig.7 gene count and FDR tables of GO terms from GSE44076

The PPI network of GSE21510 is shown in Fig.8, which includes 250 nodes and 4518 edges.
The functional enrichment analysis in this PPI network included 30 clusters, 93 GO terms, 2
KEGG pathways, 5 Reactome pathways and 14 protein domains. The analysis (Fig.9) also
revealed that most of the genes were associated with cellular processes, metabolism, RNA
processing and maturation, along with other categories in molecular function and cellular
component, which also showed the same results as GSE44076. These genes express proteins
and then interact functionally in both PPI networks, revealing their role in the progression of
colon cancer.

Fig.8 PPI network of DEGs from GSE21510
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Molecular Function (Gene Ontology) enrichment
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tables of GO terms from GSE21510
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The interaction tables for each dataset were downloaded from STRING and exported as
EXCEL spreadsheets for further analysis. For each dataset, we picked out the top 10 nodes
with the most degree (edges) which we identified as hub genes. GTPBP4, RPF2, GRWD1,
RRS1, WDR36, CEBPZ, DDX52, KRR1, MPHOSPH10 and PUM3 are picked out in
GSE44067(Fig.10). In GSE21510, NOP56, GTPBP4, NOP58, RPF2, RRS1, GRWD1, NIFK,
WDR12, BRIX1 and BYSL are selected(Fig.11). Among the two datasets, 4 genes: GTPBP4,
RPF2, GRWD1 and RRS1 are shared, suggesting these genes are promising or potential
targets for reprogramming.
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Di ion

Based on the analysis of the two datasets, this project deepened our understanding of the

molecular mechanism of colon cancer and identified key hub genes. The hub genes GTPBP4,
RPF2, GRWD1, and RRS1, which we identified in both PPI networks, serve as central
regulators of gene interaction in colon cancer cells in different ways. GTBP4 (GTP binding
protein 4) is a GTPase and functions as a molecular switch that can flip between two states:
active(the molecule acts as a signal to trigger other events in the cell), when GTP is bound,
and inactive, when GDP is bound[14]. It is said to be closely related to tumor metastasis,
promotes cell motility and is detected in CRC metastatic tissues. GTPBP4 promotes CRC
metastasis by primarily disrupting the actin cytoskeleton [15]. RPF2 (ribosome production
factor 2 homolog) is a gene that enables 5S rRNA binding activity and is involved in protein
localization to the nucleolus[16]. An elevated expression of RPF2 was observed in cancerous
cells compared to normal colorectal cells which served as an indication that RPF2 may be
involved in the activation process of Epithelial-Mesenchymal Transition(EMT) (a cellular
program in which epithelial cells acquire a mesenchymal phenotype, resulting in increased
invasiveness, enhanced stemness, and heightened resistance to therapeutic agents and
immune responses in epithelial tumor cells), therefore enhancing the invasive and migratory



capabilities of CRC cells[1]. Additionally, GRWD1 (glutamate-rich WD repeat containing 1)
encodes a glutamate-rich protein that contains five WD-repeat motifs which plays a critical
role in ribosome biogenesis[17]. Moreover, GRWD1 was found to stimulate cell migration,
induce EMT and promote colony formation; hence, it is positively correlated with tumour
size. Interestingly, this glutamate-rich gene also activates the Notch signaling pathway which
is involved in development, differentiation, cell proliferation and apoptosis. Some studies
have shown that it also plays a regulatory role in malignant tumors[18]. Lastly, RRS1
(regulator of ribosome synthesis 1) enables 5S rRNA binding activity. It is involved in several
processes, including mitotic metaphase chromosome alignment, protein localization to the
nucleolus and ribosomal large subunit assembly[19]. Recent studies have shown that RRS1
interacts with RPF2 to form a complex that regulates the maturation of the 60S ribosomal
subunit. In this way, it plays an important role in ribosome biogenesis. RRS1 is highly
expressed in colorectal cancer (CRC) tissues, and its expression is inversely correlated with
the survival of CRC patients[20].

Because all these hub genes converge on ribosome biogenesis, they represent attractive
reprogramming targets. Aberrant cell growth and proliferation depend on hyperactive, in
other words, dysregulated ribosome biogenesis, meaning increased protein synthesis and
overactive translation. This is enabled by cellular regulatory pathways that are hijacked to
tune transcription and translation. This is consistent with the acquisition of genetic and
epigenetic alterations by cancer cells and changes in the regulatory layers of translation such
as microRNAs and RNA-binding proteins that play significant roles during tumor
progression and metastasis[21].

Thereby, modulating the expression of those hub genes could essentially reduce translational
output, weaken metastatic potential and oppose excessive changes in ribosome biosynthesis
and halt cell growth. Ultimately, pushing cells toward a less proliferative, more benign
phenotype.[21]. Additionally, reprogramming hub genes could trigger a wider network effect
and possibly shut down multiple malignant pathways in one go while sparing normal cells
due to non-oncogene addiction[22], enhancing therapeutic effects. The diagram below
outlines the process of ribosome biogenesis.
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This project provides a validated bioinformatics pipeline as it demonstrates a clear,
replicable and accessible workflow using public tools (GEO2R, STRING, basic Excel analysis)
to move from raw genomic data to a list of high-value therapeutic targets. Excel is used over
Cytoscape, considering that Excel is a common tool used in daily life. This essentially serves
as a guideline for other young researchers to apply similar analysis to other cancer types.
Moreover, successfully identifying known central players in colorectal cancer like GTPBP4
and RPF2, provides strong evidence that analyzing PPI networks built from DEGs is a valid
strategy for uncovering key regulatory genes. This justifies further investment in more
complex network medicine approaches in the future. The precise reduction of gene targets
from thousands of DEGs to a handful of hub genes directly informs wet-lab research by
providing a strong, data-driven hypothesis to test, which saves time, resources and funding.

Hub genes also assist in the discovery of more biomarkers. For example, receiver operating
characteristic (ROC) analysis can be used to further evaluate their diagnostic value for
targeted therapies[23].

Limitations

While informative, this study is a prototype and has several important limitations. The size
of the GEO datasets used inherently limits the analysis, as it may not capture the full genetic
diversity of cancer patients or account for the tumor microenvironment's influence on gene
expressions, which play a crucial role in regulating pathways like EMT and ribosome
biogenesis[24].

The PPI network from STRING represents a composite of interactions from various cell types
and conditions. It is a static model that does not capture the dynamic, context-specific nature
of gene regulatory networks within a living tumor. Moreover, STRING integrates predicted
as well as experimental interactions, so some connections between genes may not actually
occur in vivo, causing false positives. In terms of hub genes, identifying them based solely on



their degree is a useful first step, but it is too simplistic as it does not incorporate other
important network metrics, such as "betweenness centrality”" (how crucial a node is to
connecting others[25]) or the direction of regulation (activation vs. inhibition). From our
results, most of our hub genes are involved in ribosome biogenesis. Therefore, even if those
hub genes are essential for cancer progression, targeting ribosome biogenesis can also harm
normal proliferating cells, limiting therapeutic use[21].

Most importantly, this project is based on computational predictions, not functional
validation as the entire project is in silico. The role of these hub genes in functionally
maintaining the cancerous state and their reprogrammability remains a prediction until
validated experimentally in cell and animal models. Due to this lack of clinical validation, we
cannot guarantee that these genes can be safely targeted in humans. The lack of patient
specificity should also be acknowledged, as it does not account for inter-patient
heterogeneity and does not constitute a personalized medicine approach without further
patient-specific data integration.

Potential next steps

To build upon this prototype and overcome its limitations, future directions can include both
experimental and computational strategies. CRISPR/Cas9 can be used in cancer research to
edit genomes for the exploration of tumorigenesis and development. More specifically,
CRISPR activation (CRISPRa) can be used to epigenetically upregulate tumor-suppressor
genes and CRISPR interference (CRISPRI) to silence oncogenes by providing a valid measure
for deletion, thereby inhibiting tumour growth[26]. CRISPR techniques can be explored in
lab models such as Patient-Derived Organoids, which preserve tumor biology, heterogeneity
and show the advantages for editable genes. Orthotopic xenograft models are also used to
test efficacy in vivo to assess the impact on tumor growth and metastasis[27]. Moreover,
using single-cell RNA-seq can track transcriptomic changes at individual cell level and
determine if a stable, reprogrammed state is achieved[28].

More recently, the use of Al has been studied in terms of its contribution to clinical science.
Training AI models (e.g., Graph Neural Networks) on larger, multi-omics datasets to identify
hubs that are consistently central across a large population can separate core CRC drivers
from context-specific ones. Al can also be used to discover novel interactions by mining these
networks for synthetic lethal interactions, so non-obvious secondary targets become
essential only when a primary hub is perturbed.

From a personalised medicine approach, creating personalized gene expression profiles for
individual patients can identify which hubs are most dominant in their specific cancer. This
can be achieved by integrating genomic and transcriptomic data from their tumor
biopsies[29].

By addressing these next steps, the promising predictions of this prototype can be rigorously
tested, refined, and translated into a tangible strategy for overcoming cancer through

network reprogramming.

Conclusion



In conclusion, a comprehensive analysis of DEGs and pathways involved in the occurrence
and development of colorectal cancer was performed. We explored and obtained key
regulatory genes and pathways contributing to the progression of colorectal cancer which
promote the understanding of molecular mechanisms and clinically related molecular targets
for reprogramming from malignant cells to their benign states. This prototype, although
preliminary, mirrors the strategy pioneered by KAIST, where gene network analysis was used
to identify master regulators in colon cancer while providing a proof of concept for cell
reprogramming.
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